Gli astronomi hanno individuato segni di un “punto caldo” in orbita attorno al Sagittario A*, e[{” attribute=””>black hole at the center of our galaxy, using the Atacama Large Millimeter/submillimeter Array (ALMA). The finding helps us better understand the enigmatic and dynamic environment of our supermassive black hole.
“We think we’re looking at a hot bubble of gas zipping around Sagittarius A* on an orbit similar in size to that of the planet Mercury, but making a full loop in just around 70 minutes. This requires a mind-blowing velocity of about 30% of the speed of light!” says Maciek Wielgus of the Max Planck Institute for Radio Astronomy in Bonn, Germany. He led the study that was published today (September 22, 2022) in the journal Astronomy & Astrophysics.
The observations were made with ALMA in the Chilean Andes, during a campaign by the Event Horizon Telescope (EHT) Collaboration to image black holes. ALMA is — a radio telescope co-owned by the European Southern Observatory (ESO). In April 2017 the EHT linked together eight existing radio telescopes worldwide, including ALMA, resulting in the recently released first-ever image of Sagittarius A*. To calibrate the EHT data, Wielgus and his colleagues, who are members of the EHT Collaboration, used ALMA data recorded simultaneously with the EHT observations of Sagittarius A*. To the research team’s surprise, there were more clues to the nature of the black hole hidden in the ALMA-only measurements.
Utilizzando ALMA, gli astronomi hanno trovato una bolla di gas bollente in orbita attorno al Sagittario A*, il buco nero al centro della nostra galassia, al 30% della velocità della luce.
Per caso, alcune osservazioni sono state fatte poco dopo che un’esplosione o un bagliore di energia a raggi X è stata emessa dal centro della nostra galassia, che è stata osservata da[{” attribute=””>NASA’s Chandra X-ray Observatory. These kinds of flares, previously observed with X-ray and infrared telescopes, are thought to be associated with so-called ‘hot spots’, hot gas bubbles that orbit very fast and close to the black hole.
“What is really new and interesting is that such flares were so far only clearly present in X-ray and infrared observations of Sagittarius A*. Here we see for the first time a very strong indication that orbiting hot spots are also present in radio observations,” says Wielgus, who is also affiliated with the Nicolaus Copernicus Astronomical Center, in Warsaw, Poland and the Black Hole Initiative at Harvard University, USA.
Questo video mostra un’animazione di un punto caldo, una bolla di gas caldo, in orbita attorno al Sagittario A*, un buco nero quattro milioni di volte più grande del nostro Sole al centro del nostro pianeta.[{” attribute=””>Milky Way. While the black hole (center) has been directly imaged with the Event Horizon Telescope, the gas bubble represented around it has not: its orbit and velocity are inferred from both observations and models. The team who discovered evidence for this hot spot — using the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner — predicts the gas bubble orbits very close to the black hole, at a distance about five times larger than the black hole’s boundary or “event horizon.”
The astronomers behind the discovery also predict that the hot spot becomes dimmer and brighter as it goes around the black hole, as indicated in this animation. Additionally, they can infer that it takes 70 minutes for the gas bubble to complete an orbit, putting its velocity at an astonishing 30% of the speed of light.
Credit: EHT Collaboration, ESO/L. Calçada (Acknowledgment: M. Wielgus)
“Perhaps these hot spots detected at infrared wavelengths are a manifestation of the same physical phenomenon: as infrared-emitting hot spots cool down, they become visible at longer wavelengths, like the ones observed by ALMA and the EHT,” adds Jesse Vos. He is a PhD student at Radboud University, the Netherlands, and was also involved in this study.
The flares were long thought to originate from magnetic interactions in the very hot gas orbiting very close to Sagittarius A*, and the new findings support this idea. “Now we find strong evidence for a magnetic origin of these flares and our observations give us a clue about the geometry of the process. The new data are extremely helpful for building a theoretical interpretation of these events,” says co-author Monika Moscibrodzka from Radboud University.
ALMA allows astronomers to study polarized radio emission from Sagittarius A*, which can be used to unveil the black hole’s magnetic field. The team used these observations together with theoretical models to learn more about the formation of the hot spot and the environment it is embedded in, including the magnetic field around Sagittarius A*. Their research provides stronger constraints on the shape of this magnetic field than previous observations, helping astronomers uncover the nature of our black hole and its surroundings.
The observations confirm some of the previous discoveries made by the GRAVITY instrument at ESO’s Very Large Telescope (VLT), which observes in the infrared. The data from GRAVITY and ALMA both suggest the flare originates in a clump of gas swirling around the black hole at about 30% of the speed of light in a clockwise direction in the sky, with the orbit of the hot spot being nearly face-on.
“In the future, we should be able to track hot spots across frequencies using coordinated multiwavelength observations with both GRAVITY and ALMA — the success of such an endeavor would be a true milestone for our understanding of the physics of flares in the Galactic center,” says Ivan Marti-Vidal of the University of València in Spain, co-author of the study.
The team is also hoping to be able to directly observe the orbiting gas clumps with the EHT, to probe ever closer to the black hole and learn more about it. “Hopefully, one day, we will be comfortable saying that we ‘know’ what is going on in Sagittarius A*,” Wielgus concludes.
More information
Reference: “Orbital motion near Sagittarius A* – Constraints from polarimetric ALMA observations” by M. Wielgus, M. Moscibrodzka, J. Vos, Z. Gelles, I. Martí-Vidal, J. Farah, N. Marchili, C. Goddi and H. Messias, 22 September 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202244493
The team is composed of M. Wielgus (Max-Planck-Institut für Radioastronomie, Germany [MPIfR]; Centro astronomico Nicholas Copernicus, Accademia polacca delle scienze, Polonia; The Black Hole Initiative presso l’Università di Harvard, USA [BHI]), M. Moscibrodzka (Dipartimento di Astrofisica, Radboud University, Paesi Bassi [Radboud]), J. Vos (Radboud), Z. Gelles (Center for Astrophysics | Harvard & Smithsonian, USA e BHI), I. Martí-Vidal (Universitat de València, Spagna), J. Farah (Las Cumbres Observatory, USA; University dalla California, Santa Barbara, USA), N. Marchili (Centro Regionale Italiano ALMA, INAF-Istituto di Radioastronomia, Italia e MPIfR), C. Goddi (Dipartimento di Fisica, Università degli Studi di Cagliari, Italia e Universidade de São Paulo, Brasile) e H. Messias (Osservatorio congiunto ALMA, Cile).
L’Atacama Large Millimeter/submillimeter Array (ALMA), una struttura astronomica internazionale, è una partnership tra l’ESO, la National Science Foundation (NSF) degli Stati Uniti e il National Institutes of Natural Sciences (NINS) del Giappone in collaborazione con la Repubblica del Cile. ALMA è finanziata dall’ESO per conto dei suoi Stati membri, da NSF in collaborazione con il National Research Council of Canada (NRC) e il Ministero della Scienza e della Tecnologia (MOST) e da NINS in collaborazione con Academia Sinica (AS) a Taiwan e il Korea Institute for Astronomy and Space Sciences (KASI). ). La creazione e le operazioni di ALMA sono guidate dall’ESO per conto dei suoi stati membri; A cura del National Radio Astronomy Observatory (NRAO), gestito da Associated Universities, Inc. (AUI), per conto del Nord America; E dal National Astronomical Observatory of Japan (NAOJ) per conto dell’Asia orientale. Il Joint ALMA Observatory (JAO) fornisce una guida e una gestione unificate per la costruzione, il funzionamento e il funzionamento di ALMA.
L’European Southern Observatory (ESO) consente agli scienziati di tutto il mondo di scoprire i segreti dell’universo a beneficio di tutti. Progettiamo, costruiamo e gestiamo osservatori di livello mondiale sulla Terra – che gli astronomi usano per affrontare domande entusiasmanti e diffondere la magia dell’astronomia – e promuoviamo la cooperazione internazionale in astronomia. Fondata come organizzazione intergovernativa nel 1962, oggi l’ESO supporta 16 Stati membri (Austria, Belgio, Repubblica Ceca, Danimarca, Francia, Finlandia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Spagna, Svezia, Svizzera e Regno Unito ), Insieme al paese ospitante Cile e con l’Australia come partner strategico. Il quartier generale dell’ESO, il centro visitatori e il planetario, ESO Supernova, si trova vicino a Monaco in Germania, mentre il deserto cileno di Atacama, un luogo meraviglioso con condizioni uniche per l’osservazione del cielo, ospita i nostri telescopi. L’ESO gestisce tre siti di monitoraggio: La Silla, Paranal e Chajnantor. A Paranal, l’ESO gestisce il Very Large Telescope e il suo Very Large Telescope Interferometer, oltre a due telescopi per rilievi a infrarossi e il telescopio per rilievi a luce visibile VLT. Sempre in Paranal, l’ESO ospiterà e gestirà il South Array Cherenkov Telescope, l’osservatorio di raggi gamma più grande e sensibile del mondo. Insieme a partner internazionali, l’ESO gestisce APEX e ALMA a Chajnantor, due strutture che monitorano il cielo nella gamma millimetrica e sub-millimetrica. A Cerro Armazones, vicino a Paranal, stiamo costruendo “l’occhio più grande del mondo sul cielo” – il Very Large Telescope dell’ESO. Dai nostri uffici a Santiago, in Cile, supportiamo le nostre operazioni nel paese e lavoriamo con i partner e la comunità cilena.
“Giocatore. Aspirante evangelista della birra. Professionista della cultura pop. Amante dei viaggi. Sostenitore dei social media.”